aboutsummaryrefslogtreecommitdiff
path: root/bird-machine-macros/src/dfa.rs
blob: 6f5e6f7be7f12328142ee55e79758908e6aff68b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
use std::collections::{BTreeMap, BTreeSet, VecDeque};

use proc_macro2::TokenStream;
use quote::{quote, ToTokens};

use super::nfa::{Range, NFA};

/// A nondeterministic finite automaton.
/// By convention, always starts in state 0.
pub struct DFA {
    transition_table: BTreeMap<usize, BTreeMap<Range, usize>>,
    accept_states: BTreeSet<usize>,
}

struct LabeledDFA<Label: Ord> {
    start_state: Label,
    transition_table: BTreeMap<Label, BTreeMap<Range, Label>>,
    accept_states: BTreeSet<Label>,
}

impl From<NFA> for LabeledDFA<BTreeSet<usize>> {
    fn from(nfa: NFA) -> Self {
        type StateSet = BTreeSet<usize>;

        let mut transition_table: BTreeMap<StateSet, BTreeMap<Range, StateSet>> = BTreeMap::new();

        let mut queue: VecDeque<StateSet> = VecDeque::new();

        let start_state = nfa.epsilon_closure(0);
        queue.push_back(start_state.clone());

        while let Some(state_set) = queue.pop_front() {
            let state_set = nfa.epsilon_closure_all(state_set);

            let mut next_table: BTreeMap<Range, StateSet> = BTreeMap::new();
            for &state in &state_set {
                let table_entry = nfa.transition_table.get(&state);
                let non_epsilon_table_entries = table_entry
                    .iter()
                    .flat_map(|x| x.iter())
                    .filter_map(|(c, s)| c.as_ref().map(|c| (c.clone(), s)));
                for (c, next_states) in non_epsilon_table_entries {
                    // TODO check for non-disjoint ranges
                    next_table
                        .entry(c)
                        .or_default()
                        .extend(nfa.epsilon_closure_all(next_states.iter().copied()))
                }
            }

            for states in next_table.values() {
                if !transition_table.contains_key(states) && !queue.contains(states) {
                    queue.push_back(states.clone());
                }
            }
            transition_table.insert(state_set, next_table);
        }

        let accept_states = transition_table
            .keys()
            .chain(transition_table.values().flat_map(|v| v.values()))
            .filter(|s| s.iter().any(|s| nfa.accept_states.contains(s)))
            .cloned()
            .collect();

        dbg!(&accept_states);

        Self {
            start_state,
            transition_table,
            accept_states,
        }
    }
}

impl<Label: Ord> From<LabeledDFA<Label>> for DFA {
    fn from(dfa: LabeledDFA<Label>) -> Self {
        let mut state_names = BTreeMap::new();
        state_names.insert(&dfa.start_state, 0usize);
        let mut next_name = 1usize;

        for reachable_state in dfa.transition_table.values().flat_map(|x| x.values()) {
            state_names.entry(reachable_state).or_insert_with(|| {
                let result = next_name;
                next_name = next_name.saturating_add(1);
                result
            });
        }

        let transition_table = dfa
            .transition_table
            .iter()
            .map(|(state, table)| {
                (
                    state_names[&state],
                    table
                        .iter()
                        .map(|(c, s)| (c.clone(), state_names[&s]))
                        .collect(),
                )
            })
            .collect();
        let accept_states = state_names
            .iter()
            .filter(|(s, _)| dfa.accept_states.contains(s))
            .map(|(_, n)| n)
            .copied()
            .collect();

        Self {
            transition_table,
            accept_states,
        }
    }
}

impl From<NFA> for DFA {
    fn from(a: NFA) -> Self {
        let intermediate = LabeledDFA::from(a);
        Self::from(intermediate)
    }
}

impl ToTokens for Range {
    fn to_tokens(&self, tokens: &mut TokenStream) {
        let start = self.0.start();
        let end = self.0.end();
        let result = quote!(#start..=#end);
        result.to_tokens(tokens);
    }
}

impl ToTokens for DFA {
    fn to_tokens(&self, tokens: &mut TokenStream) {
        let transition = self
            .transition_table
            .iter()
            .flat_map(|(current_state, table)| {
                table
                    .iter()
                    .map(move |(ch, next_state)| quote!((#current_state, #ch) => #next_state,))
            });
        let accepts = self.accept_states.iter();
        let result = quote! {
            let mut state = 0usize;
            for c in input.chars() {
                state = match (state, c) {
                    #(#transition)*
                    _ => return false,
                };
            }
            matches!(state, #(#accepts)|*)
        };
        result.to_tokens(tokens);
    }
}